
Lab 1: Introduction to Signal Processing with Matlab Imperial College London

V3.5 - PYK Cheung, 17 Jan 2025 Lab 1 - 1

Dyson School of Design Engineering

DE2 Electronics 2: Signals, Systems and Control

Lab Experiment 1: Introduction to Signal Processing with Matlab

(webpage: http://www.ee.ic.ac.uk/pcheung/teaching/DE2_EE/)		

Objectives

By the end of this experiment, you should have achieved the following:

• Have Matlab running on your personal laptop;
• Able to plot signals with Matlab;
• Understand basic Matlab syntax and language;
• Use functions within Matlab;
• Explore how phase affects signal shape;
• Explain the idea of orthogonality and projection of signals.

Reminder on Logbook

As in the first year’s Electronics 1, you are required to keep an electronic logbook for all the laboratory
sessions for this module. You will find a useful instruction on how to keep an electronic logbook on the
course webpage. While your logbook will not be formally marked, you are expected to answer some
questions during your oral examinations by referring to the electronic logbook.

Getting started with Matlab

For the rest of this experiment, make sure that your laptop computer has Matlab installed and running
properly. You would need to include the Signal Processing Toolbox. In this Lab session, you will investigate
the ideas covered in Lectures 1 to 3.

Before you start, I strongly recommend that you to create a
directory structure for the lab sessions in Electronics 2. A
possible structure may looks something like this. Trust me – a
little effort now will save you lots of time later.

Exercise 1: Sinusoidal signal generation

Enter the following Matlab function to generate a sinusoidal signal using the filename: sine_gen.m. Test
the function to produce the plot as shown.

Lab 1: Introduction to Signal Processing with Matlab Imperial College London

V3.5 - PYK Cheung, 17 Jan 2025 Lab 1 - 2

Test this function in the interactive mode of Matlab:

Make notes in the electronic logbook about what you have learn,
and the results you get.

Exercise 2: Spectrum of the signal

Enter the following function using the filename: plot_spec.m.
This function uses the Matlab built-in function “fft” to compute
the frequency spectrum of the signal. Don’t worry about
exactly how this works for now. (I deliberately want you to type
the code into Matlab instead of doing cut-and-paste. In this
way, there is a higher chance that you will remember some of
the syntax of Matlab.)

Test this function in the interactive mode of Matlab and you
should see the following frequency spectrum plot. You can

zoom onto the peak frequency at 400Hz using the button.

Lab 1: Introduction to Signal Processing with Matlab Imperial College London

V3.5 - PYK Cheung, 17 Jan 2025 Lab 1 - 3

Exercise 3: Two tones

Now generate two sinewaves, s1 at 400Hz (amplitude 1.0V) and s2 at 1000Hz (amplitude 0.5V), using a
sampling frequency of 10kHz and each having a duration of 1.0 second. Add these together as “sig” and
plot the waveform.

Plot the spectrum of the combined signal.

Exercise 4: Two tones + noise

Assume that your two-tone signal is called “sig”, create a noisy version of this signal using:

noisy = sig + randn(size(sig));

The function randn(.) produces a set of random numbers. How many samples? That is decided by the
number of data samples in “sig” with the function size(.). Now, plot noisy and its spectrum.

What have you learned from this exercise?

Exercise 5: Projection using dot product

Let us now treat the two sinusoid signals s1 (400Hz) and s2 (1000Hz) as two vectors. You can find the
projection of s1 on s2 by computing their inner product in Matlab:

dot_product = s1*s2’;

(Note that s2’ is the transpose of s2.)

What value do you get? Now create another sinewave s3 at 401Hz, and find the dot product (or inner
product) of s1 on s3. What do you get?

Sometime, dot product is called projection of s1 onto s2. It is a measure of how much of the s1 signal can
be found in s2 signal.

Finally, find the dot product of (s1 + s2) on s1. What do you get?

Exercise 6: Using PyBench board as a spectrum analyser

The PyBench board is designed to support this module. It runs MicroPython natively on an ARM processor
on the Pyboard module. The microSD card contains various Python code that I have prepared for you.
Which MicroPython (mPy) script is run depends on the setting of the 3 DIP switches at the top left corner
as described below.

Lab 1: Introduction to Signal Processing with Matlab Imperial College London

V3.5 - PYK Cheung, 17 Jan 2025 Lab 1 - 4

	

Connect the PyBench board to a USB power source using a micro USB cable.

Make sure that RED switches on the top left corner is in the 100 position (SW=4):

Press the left button (RST) on the Pyboard (the main processor board) to run the FFT program running on
the Pyboard.

The OLED display should show the spectrum of the audio signal capture by the microphone amplifier. The
X-axis is from 0Hz to 5kHz. The Y-axis is in dB and shows the range of 0dB to -40dB.

Go to the online tuning fork website on:

https://toolster.net/tuning_fork

or, download a free tuning app onto your phone. Generate a pure tone signal and watch the spectrum being
displayed on the PyBench board.

Suggestions to Explore for Yourself

1. Modify Exercise 3 by changing the phase angle of the two tone signals and sum them. Explore how
the shape of the time domain signal varies with phase.

2. Below is from Slide 20 of Lecture 3, showing the Fourier series coefficient of a square signal.
Assume A = 1. Write a Matlab program that gradually increases the number of harmonics
components added together and plot the resultant signal. This will show how increasing the
number of harmonics result in better and better quality square wave.

If you want to be fancy, you can even animate this in Matlab! In previous year, a student even
made a movie of this!

